The Bug

Ellen Ullman

Read Online ©

http://bookspot.club/book/138805.the-bug
http://bookspot.club/book/138805.the-bug

The Bug

Ellen Ullman

The Bug Ellen Uliman

In 1984, at the dawn of the personal-computer era, novice software tester Roberta Walton stumbles across a
bug. She bringsit to itsinadvertent creator, longtime programmer Ethan Levin, and the two embark on a
hunt for the elusive bug, nicknamed “ The Jester” for its tendency to appear randomly and only at the least
opportune moments, jeopardizing the fate of the company. Ethan’ s attempts to find a solution soon become a
frightening obsession that threatens to destroy both his professional and personal life. Roberta, on the other
hand, is drawn to the challenge. Forced to learn how to program, and seeking refuge from her own private
troubles, she becomes enthralled with learning to speak the computer’ s language. Expertly merging code
with prose, big ideas with intensely persona stories, Ellen Ullman brilliantly illuminates the space between
human beings and computers—a space we occupy every day as we peer into our monitors.

The Bug Details

Date : Published July 13th 2004 by Anchor (first published 2003)
ISBN : 9781400032358

Author : Ellen Ullman

Format : Paperback 368 pages

Genre : Fiction, Science, Technology, Novels, Science Fiction

¥ Download The Bug ...pdf

B Read Online The Bug ...pdf

Download and Read Free Online The Bug Ellen Ullman

http://bookspot.club/book/138805.the-bug
http://bookspot.club/book/138805.the-bug
http://bookspot.club/book/138805.the-bug
http://bookspot.club/book/138805.the-bug
http://bookspot.club/book/138805.the-bug
http://bookspot.club/book/138805.the-bug
http://bookspot.club/book/138805.the-bug
http://bookspot.club/book/138805.the-bug

From Reader Review The Bug for online ebook

Lisa Eckstein says

This novel is about the quest to track down and fix a software bug, and I've never read another piece of
fiction that makes authentic programming details such an integra part of the plot. If you're tickled by the
idea of "kill -9" asaplot point, you'll like this book. But if you don't know what this means, don't worry,
because al is entertainingly explained within the text, and the story is about so much more than a bug.

The setting is the mid-1980s, during the early days of graphical user interfaces. A software tester who
wanted to be alinguistics professor discovers a bug that can't be replicated. She passes a report to the
engineer responsible for the front end code, and he tries to ignore the problem, the same way he'signoring
his girlfriend and the increasing distance in their relationship. In time, the bug reappears, but it remains
elusive, unable to be captured or corrected, and it gradually wreaks havoc on the lives of these two
characters.

| admire the way Ullman digs into the depths of both code and human behavior to tell this story. The strong
and careful plotting make thisis a suspenseful and fascinating read.

Parker says

This one was so engrossing | canceled plans and stayed up late just to finish it. It's awonderful novel from
Ellen Ullman about software development at a database maker during the early- and mid-80s PC revolution,
but it's really about relationships between people, and between people and machines, and how we deal with
flawsin those relationships. Most surprising to me, is that the software bug named in the title is fleshed out
as a specific and realistic programming error, and is actually the source of agreat deal of dramatic tension
and sort of a character in itself. Very well done.

Robin says

Debugging: what an odd word. Asif "bugging" were the job of putting in bugs, and debugging
the task of removing them. But no. The job of putting in bugs is called programming. A
programmer writes some code and inevitably makes the mistakes that result in the malfunctions
called bugs. Then, for some period of time, normally longer than the time it takes to design and
write the code in the first place, the programmer tries to remove the mistakes.

The Bug is an utterly absorbing tragedy in four acts. Set primarily in the mid-80s in a software startup*
working to build the first ever database that is on the network (1) and that you can interact with using a
mouse (1), the book follows two main protagonists. These two main characters, despite being extremely
prone to making poor decisions (which usually bothers me to the point of book abandonment) are somehow
unfailingly sympathetic. Ethan Levin, programmer, and Berta Walton, tester, think they are nothing like one
another, but they share a core set of traits that make them both easy to identify with. Above al: frustrated

ambitions, relationship issues**, imposter syndrome, and a troubling habit of caring about quality.

* [t'sNOT Oracle, okay? The end matter of this book makes very clear that NO resemblance to actual
companies, vendors, or products are in any way implied. NOT Oracle. Got it? Not. Oracle.

** Relationship issuesis putting it mildly: one wonders how they even managed to get into long term
relationshipsin the first place, and the inevitability and slow-motion progression of their utter failure plays
out asif inextricably linked with the mysterious and inscrutable bug at the novel's heart.)

You might loveit if:

- you have ever squirmed in agony while watching the TV show Silicon Valley.

- you have ever felt betrayed by aworld of uncertainty when you carefully chose courses of study that would
alow you to thrive on formal and predictable rules.

- you have ever harbored defenestrative thoughts about computers.

- you have ever speed walked across half of an open-plan office to turn off the infernal beeping sound on the
fourth-rate latte machine, and railed silently against the oblivious humans who were standing right next to it
asif they didn't even notice the sound.

Y ou might also loveit if you simply love well-written stories about humans interacting with the computers
that increasingly make up our world. Ullman wrote this book shortly after the .com crash, looking back two
decades from there to a time, which now seems like the impossibly distant past, when confronting and
examining the psychological oddities of interacting with relatively basic computer systems was still a novel
experience.

The thoughts were gone, decomposed, passed into code, where they worked, where they ran,
but could not be reassembled into human-think. All those tumbling thoughts had become
marching lines of stars, pointersto pointers to arrays of pointers, functions calling functions
calling functions. Layers of code talking to code, machines muttering to themselvesin their
own language.

This novel risesto five stars due to afew over-the-top bits of startling, utterly true-to-life aspects that
resonate strongly with me personally:

1. Literary references. (How many books set in Silicon Valley contain a Middlemarch reference? And two
flakey servers called Beowulf and Grendel?)

2. Sound and light sensitivity. (Preach!)

3. Interest in linguistic formalism as an indicator for predilection for other logical realms, like engineering.
(Why didn't anyone tell me thisin undergrad? If | had read this book the year that it was published, would |
have made different career choices? Discuss.)

4. Small, immediate tragedies, perfectly described. (Having to take a meeting with "the Bobs' while sitting
on an exercise ball. Mandatory training courses that are woefully irrelevant. Accidentally running rm* and
erasing an entire day's worth of work on aworkstation named "hubris.")

Fair warning, however. Be prepared to descend to some dark places. Thisis not about a software bug. Thisis
about human frailty, and it will kick you where it hurts.

Charles says

First, let me state that | have alot of respect for Ms. Ullman as an Essayist on computer technology and
techie org behavior.

Being arefugee from geekdom, "The Bug: A Novel" accurately describes the technology and socio-
dynamics of writing software in those bygone days. However, the novel iswan and bloodless. Ms. Ullman's
proseiscrisp and clean to read, but it fails to convey strong emotion. In particular, she misses the potentia
for the humor, ironic, puerile, or otherwisein the story.

This book is aread that evokesin me alot of nostalgia, but it is hardly, "gripping, exciting, and compelling”.

Martin McCléelan says

Ullman is an American treasure. So rarely do voices so unique and interesting emerge, and in her case only
after acareer in afield unrelated to writing, but related to this book: computer programming. Thisisnot a
page turner, although | certainly kept my interest. It is not athriller, or a paint-by-numbers escalation into an
expected exegesis.

Thisisanovel exploring the obsession and devotion it takes to hold a portion of a complex programming
problem in your mind, and execute it. In this case, laden with the drama our protagonist (or, antagonist, since
the person we spend the time with most is surely that) has wrought himself with hisinattention and difficult
social manner, and is certainly paying for during the chapters of the work.

Ullman quite recently wrote aNew Y ork Times article about her experiences being awoman in the tech
world. This book covers much of the same ground without an editoria finger wagging at the reader. Still, the
experience of her character, this woman involved in the tech world of the 80s on the verge of changing
everything we know, is a precursor to the conversations we are having today over women in the tech world
and how welcome they feel, and how effective at their jobs they can be while dealing with the cascading
nonsense of atraditional boys club.

Thisis not a preachy book, though, lest | give you that idea. It is abook that tells a clean simple story, and in
the way of it exposes you to the harsh reality, the monastic existence, the soulless sacrifices these early
Silicon Valley workers were part and parcel of.

A fascinating read, a historical gem, a woman whose finally wrought prose is worthy of your attention, and
who will allow you to arrive at your own conclusion and walk away with your own experiences. That in of
itself is rare enough these days, and certainly worthy of the read.

Bertrand says

Lately | have been trying to learn some programming. My mind has been shaped by thirty years of favouring
the humanities, so at face value, knowing fifty ways of writing 'hello world!" is not exactly thrilling. Of
course thereisalot moreto it than that: tantalising anal ogies with formal logic and linguistics open wide
speculative vistas too, though again those were areas | never really dared to look into, precisely because of

the 'symbolic compression' they share with programming.

To keep myself on track, | have tried to fill my prized |eisure-time with books not of programming but about
programming, from a general introduction to how hardware actually work, to a history of computing from
Pascal onward. | also looked for fiction about programming: code, after all, is probably the root metaphor for
culture, and as such could make a compelling theme for anovel.

Surprisingly, however, | found little that deals expressly with the subject. Ullman received some accolades,
mostly for her non-fiction and for being among the rare women to witness the personal-computing revolution
(mostly leaning in, | think) - and until Dunkle Zahlen istranslated (or my German somehow drastically
improves) | thought this one would do the job.

In anutshell, narration is divided between Raoberta, a linguistics PHD who ends up testing software after
failing to build a career in academia, and Ethan, another failed academic turned computer wiz. Both work, in
the early eighties, for a start-up building B2B data-base softwares, of which Ethan is put in charge of the
graphic interface. Both are full of resentment with their situation, and their private lives suffer from it, asit
does from the strictures the computer imposes on their minds. When Roberta identifies a particularly nasty
bug with the graphic interface, they are brought together in a frustrated quest to track down the culprit, which
provesto be lastingly elusive. Ethan, plagued by anxietiesin all the wrong places, descends into delirium. As
the bug, now christened "The Jester' by company-culture, slowly take over hislife, Roberta watches from the
side-lines.

If that does not sound like the most original plot in the world, it's because it isn't. Ullman does promise, in
the spirit of her celebrated non-fiction, to afford the reader a glimpse of the world of programming, itsrites
and jargon, its hierarchies and its symbols. That much she does aright, in the colloquial manner of the tour
guide rather than in any details: enough to gain some feeling of familiarity with the machine, not enough to
actually understand much of how it works. Roberta's own discovery of the subject serves as an introduction,
and the tour though predictable, is enjoyable enough.

The main issue shines through pretty quickly, namely the abysmally flat supporting cast. Even her two
'heroes’ are hardly convincing. Roberta, and especially Ethan, are fundamentally maladjusted characters,
embodying that lasting myth of neck-beard romanticism: the al-too-rational genius, who cannot cope with
society'sindulgent fuzziness, and seeks refuge in the certainties of science. Along comes of course the smug
and naive satisfaction of the Silicon Valley self-made man, foreclosing any sense of political or personal
responsibility. The reader cannot decide whether their tedious love-life and dedication to routine is supposed
to be tragic or comical, while the slow trickling out of the secondary characters from their unravelling livesis
welcomed with asigh of relief (special mention here to the big-breasted bisexual German sys-admin, who
listens to Einstlirzende Neubauten: avery nineties trope, though the book is set in the eighties and written in
the noughties).

Characterisation, then, is dreadful, but not all is as bad. As probably befits anovdl, it is the emotional
experience of the programmer which really shines through, and here we have afew moments of bravery:
"For thefirst time, | understood there was a mapping between the symbolic words of the code and the
physical existence of the machine. And something in me shifted. | decided | aready knew far too much
about words . . . Now | wanted to know more about the machine." (171)

Thisis an epiphany | went through not long ago, realising how successfully stacks and interface eclipse the
materiality of computing. Similarly, Ullman has some insights into the ecstatic pleasures of formality, of
letting language speaks: "The cleanliness of programming was a balm. | had spent months unlearning the
desire to be unique. | was trying to write code so standard in form, so common in expression, that my work,
ideally, could not be distinguished from another programmer’'s. | was striving for a certain clarity and
simplicity, aform of impersonal beauty" (176).

Ullman also clearly grew up in the age when video killed the radio star. She takes far too much at heart the
common-place dictum 'show don't tell'. To any prospective writers out there, | should like to say: better a
well handled expository dialogue, than a poorly-observed reliance on a hollywoodian body-language. The
info-dump will only ever be as bad (or as good) as the ideas you put in there. Clichéd mannerisms will fill
my minds' eye with visions of bad sitcoms no matter the point you are trying to make.

However Ullman is not a bad writer. Existential encounters with code aside, she also has a few perceptively
chronicled episodes, such as this earthquake scene: "How long did it go on? Seconds, minutes, an eternity, as
time slowed down, down, down in the accumulating awareness of things that formerly had not been known
to express themselves. Walls that had been solid, groaning. Doors that had been closed, rattling to be opened.
Windows that had been clear, bending with displeasure.” (145)

The problem, then, is not that the author isincompetent, but that she eagerly substantiates the platitude on
computer-people being oblivious to social redlity, a self-fulfilling observation which luckily istoday in the
process of being disproved. | suspect it was a side-effect of computing moving from research-tool to
consumer-product, and the consequent reshuffling of software engineers classidentity.

This aso shows in her handling of technology as atheme, whose impact is seen exclusively on the
individual, never in collective, let aone political terms. The idea of the bug-haunting, which if not
groundbreaking still had potential, is not very much exploited: Ullman's dignified concern with the
neighbours music at night, or the boyfriend not returning the calls leaves little room for technognostic
considerations. 'The jester' is thus neither PK Dick nor Kafka, but rather some interesting backdrop to the
uninteresting lives of itsvictims.

All inall, the book is a disappointment. It points to what a novel on programming could be, it gestures
toward ararely acknowledged subjective dimension of coding, and has some poetic insights into the process,
but isirreparably mired with very poor characterisation and lacklustre plotting.

M. L. Wilson says

The Bug is the debut novel of writer and computer programmer, Ellen Ullman. The novel is a semi-
autobiographical story which is based upon her years working as a programmer in for acompany in
Cdlifornia’s“Silicon Valley” in the 1980s. Ullman fleshes herself out in the novel through the character of
Raoberta Walton, a quality tester at a small software firm. It isthrough her discovery of the presence of a
software syntax error—a bug—that breatheslife into the novel.

Ullman does afine job of setting the stage of an early 1980s software firm struggling to write code and
develop programs amid heavy competition while detailing the inherent difficulties associated with such
innovation. It is through this frenetic atmosphere that Walton is forced to confront alead programmer over
his aleged mistake in the code. The programmer, Ethan Levin, takes adim view of Walton's assessment as
he does not view her as qualified. That, coupled with hisinsecurities, provides the impetus of Levin's
downward spiral.

The bug which comes to be referred to as The Jester continues to dog Walton despite Levin's dismissals. An
inevitable confrontation between Levin and Walton |leads to accusations of incompetence from both sides,
but stings Walton particularly acutely; Levin refuses to accept her conclusions as she cannot program. This
challenge forces Walton to learn as much as she can in alimited amount of time in order to retrace the
possible errorsin Levin's code and thus find the bug herself.

Amidst all of the drama occurring at the company, both Walton and Levin are suffering through upheavalsin
their personal lives as well. Whereas these personal conflicts hit Levin particularly harshly, Walton seems to
draw strength from the challenges presented to her. Both bury themselvesin their work, but for different
reasons. Ullman is able to paint an image of Levin'sincreasing fedlings of persecution and isolation
particularly well, allowing the reader feel the lack of oxygen; the constriction brought on by the mounting
tension and stress.

Levin'sbossis a bearded, avuncular man named Harry Minor. He was a man brilliant in his own right,
having helped to create Internet Protocol; a man who could easily fill the role of the cool uncle. Minor, a
veteran of the computer software world, had been around long enough and had seen enough to understand
the cold realitiesin which they all existed and had learned to cope with such pressuresin his own way. In
many ways, he was Levin's opposite and could have been something of a mentor had Levin not isolated
himself. Instead, Minor winds up spending agood deal of time trying to help Levin cope with the increasing
pressures brought on by the inability of Levin to locate the error in the code and rectify the problem.

Levin's one oasis of calm and stability in his day islunch. Bill Steghman, another programmer who seemed
to carry the weight of the world on his stooped shoulders as well, would stop by Levin's office and ask his
usual oneword question, “Lunch?’ The daily routine becomes something of a comfort to Levin even if it
remains bereft of any real human contact. The two men talk only of surface topics; questions remain short
and answers shorter still.

Amidst this entire work world, was Levin's crumbling personal life. Hislive-in girlfriend, Joanna—more
attracted to the arts than anything Levin is involved with—makes an unlikely partner. Largely due to this
incompatibility and Levin's singular focus on his work drive awedge between the two which winds up
predictably splitting the two apart, further causing Levin’'s downward mental spiral.

In the end, The Bug is more a book about the responses of two people who find themselves placed in similar
circumstances. The seasoned, professional not used to failure suddenly finds himself surrounded by events
swirling out of contral. In Levin's regimented world, this chaos is more than he can bear and after both his
personal and work life implodes, so does he.

By contrast, the character of Roberta Walton sizes up the challenges presented to her. “L ook, they’ re not
quality-assurance engineers. They're not engineers at al. They can’'t even read code.” Ethan Levin had
pointed out. Faced with this realization, Walton sat down and did just that; learn to read and write code.
Though Walton also experiences the same level of personal travails as that which dog Levin, she does not
suffer the same psychological deterioration as does Levin.

It isthis contrast that makes the novel compelling. While the errant code creates the stage, it is the tension
which it creates which is the heart of the novel in the same spirit as any suspense thriller. The resolution of
the problem—the cause of The Bug—then comes as something which only a computer “techie” can
appreciate.

Ullman'’sfirst person narrative gives the book a sincere and realistic quality and her richly fleshed out
characters allow the reader to instantly connect with at |east some of them, however | have to question
whether the gratuitous use of profanity isreally a part of their professional culture or literary embellishment.

While Ullman delvesinto the world of programming, a reader neither has to be a programmer nor even
familiar with the profession to understand the point of the book. While the true magnitude of some
circumstances confronting the various characters will be lost on non-techies, it doesn’t hamper the
effectiveness that Ullman strivesfor.

Marie desJardins says

A book about computer programming and debugging -- what could be cooler?
Unfortunately, for me, it just didn't hang together that well.

The characters are so stereotyped, | got tired of the "you can only program if you're obsessive-compulsive
and antisocial" theme. Even Berta, who starts off kind of normal, turns more and more antisocial when she
starts learning how to program.

The biggest problem, for me, is that the bug that eludes them throughout the book just shouldn't have been
that hard to find. Serioudly. | did think the reason why it eventually became easier to find was clever and
actually made sense. But the main programmer is just hopeless in how he goes about looking for it. He
basically didn't try *anything* except repeatedly walking through the code. Over and over again. For, what, a
hundred pages or so? It just became really tedious.

| did enjoy the bits of computer lore and scattered fragments of code. Somebody who hasn't programmed
(much) might actually like the book more, if they're willing to learn something new. It'sacuteidea, | just
didn't really likeit all that much.

Sean Randall says

"akind of obsessional energy that was nonetheless pleasingly addictive. Asthe examples and assignments
became harder, | began making errors, having trouble getting code to compile, link, run. Y et this trouble only
drew mein, created in me afierce determination to get it working. | had never before built anything—not a
tree house, not a soapbox racer; I’d never even been able to finish awoven pot holder. | was bad with my
hands and | lived in my head, and for me there was only one way to build something: programming.”

This paragraph certainly sounded very familiar. The whole atmosphere of the work is gripping and thrilling
on acouple of levels. We've al, of course, personified bugsin our code, but to see the effects of that on a
whole team of coders and testersis quite scary. Then to look back at the systems and tools of the day and to
see actually that the testing procedures still work today. TO see another ploughing through Kernighan and
Ritchie's book with such evident enjoyment was gratifying, and the last chapter was ailmost elegiac. SO not a
book for everyone, asis so often the case, but with a splendid couple of characters, a dollop of nostalgia and
aglimpseinto the shadowy world of the computer program too.

Trish says

It's an engrossing depiction of the early days of computer technology and computer start-ups -- similar to
Plowing the Dark in the accuracy with which is captures the thought processes, foibles, and lifestyles of
those we call geeks. The Bug focuses on two employees of a database start-up: Ethan Levin, a prickly
programmer with a neurotic sense of inadequacy and a spiralling personal life, and Roberta Walton, a
refugee from academia who first scorns and then embraces the arcana of the computer.

Programming is aways an iterative process: code, check, re-code, check, repair code, ad infinitum. Bugs are
standard. But there's something almost spooky -- something malevolent -- about bug UI-1107. A bug first
spotted by Roberta and assigned to Ethan, a bug that crashes the system in a spectacle of bleeps and smeared
pixels, a bug that seemsto delight in capering before venture capitalist and potential customers, an elusive
bug that evades al efforts to pin it down. Will Ethan find and fix the bug, or will the obsessive quest to track
it down destroy Ethan?

Holly says

| was surprised (and pleased) at the extent to which Ullman presages Jaron Lanier. | cannot now recall if he

mentions her in hiswriting, since | wasn't familiar with Ellen Ullman when | read You Are Not a Gadget nor
with the New Y orker article. Just going to quote two nice passages near the end so that | can come back and
read them later:

... there is the problem of crossing the chasm between human and machine "thought": some
fundamental difference in the way humans and computers are designed to operate. | understand
the world by telling stories; the human mind makes narrative, this happens then that, events
given shape so we can draw acircle around them, see them relate, cohere, connect. We're built
to tell storiesto one another, and to be understood. But the computer was built to do, to run. It
doesn't care about being understood. It is a set of machine states - memory contents, settings of
hardware registers - and a program, a set of conditions that determines how to go from one
machine state to the next. [...] So reading the code was a matter of banishing the human story
from my mind.

...my perception of the machine had been changed forever. | knew then it was just an
approximation, a fudge, a best-case work-around on the intractable problem of time. The
machine seemed to understand time and space, but it didn't, not as we do. We are analog, fluid,
swimming in aflowing sea of events, where one moment contains the next, is the next, since
the notions of "moment" itself istheillusion. The machine - it - isdigital and digital isthe
decision to forget the idea of the infinitely moving wave, and just take snapshots, convincing
yourself that if you take enough pictures, it won't matter that you've left out the flowing,
continuous aspect of things. Y ou take the mimic for the thing mimicked and say, Good enough.

Emily says

The Bugisanovel that my father gave me for Christmas last year; | put off reading it until the summer
because | wasn't sure | could read it in good humor while still taking a programming class.

The two novelsit most reminds me of couldn't be more different. It's like Microserfs in the way it chronicles
the social fabric of atechnology project--the collaborations, rivalries, and moments of shared insight. But it's
much more literary than Coupland; it also reminds me of Netherland in the way it plumbs the unique
thoughts of someone who is falling apart in the echo chamber of their own head.

The Bug focuses on two figures. The narrator is Roberta Walton, alinguistics Ph.D. from Yae who, having

not found rewarding work in academia, grudging takes a job as atester at a software company. Over the
course of the project, she becomes obsessed with a bug that she discovered, and delightsin learning C in
order to track it down. But more of the pages are devoted to Ethan Levin, a programmer at the same
company. It is hisjob to fix the bug Roberta found, but he can't. He's a computer science Ph.D. dropout and
the bug provides afocus for al his preoccupation and self-doubt. The bug comesto feel like a portent of
disaster in his personal life. The bug is a sort of character, too. It'saflaky bug that only seemsto crop up in
important presentations to investors or customers. No one can reproduce it to study it. When its definition
and causes are finally explained, it is satisfying but also has arealistic sense of "Oh, for Pete's sake, it was
just "

| especially liked the author's skill in explaining concepts like pointers and loops, right in the story, and the
way Robertaturns her linguist's eye towards programming.

| admit that when | first learned all this about computer memory allocation, | was disappointed-
-no, offended!--in alinguistic sense. Programmers were so inept at metaphor-creation, |
thought. Memory leak: thiswasn't a"leak" of memory at all. ... Why not name it to show the
origin of the problem, with the programmer? "Memory gluttony," it should have been called.
Or "memory hogging." Even the routine they used to request memory from the operating
system had been named incorrectly. It was called "malloc," short for memory allocation, "m"
"aloc.” But of course human beings don't read "m" then "aloc" unless there is a separator, a
space, adash. No, by the implicit structures of the English language, everyone pronounces it
"MAL-loc." Md, loc. Mal: bad. Loc: Location. Bad location! But of course they'd have trouble
keeping track of memory when they'd named their tool so stupidly!

This quote isn't terribly representative, but it struck me because that is my kind of tangent. Mostly the book
is not technical, and has some great scenes and descriptions, like when a drunk person in an argument "felt
his tongue start to slide around in his mouth like a bar of soap on awet shower floor."

Thiswas avery pleasing read for me, and the only reason I'm giving it four stars rather than fiveisthat it has
some twists that would lessen its reread value.

Katie/Doing Dewey says

Summary: A thoughtful, beautifully written, character-driven meditation on programming and humanity.

"In 1984, at the dawn of the personal-computer era, Roberta Walton, a novice software tester at a Silicon
Valley start-up, stumbles across a bug. She bringsiit to its inadvertent creator, Ethan Levin...But no matter
how obsessively Ethan combs through the depths of the code, he can't find its cause... Meanwhile, the
bug...showsitself only at the least opportune times and jeopardizes the fate of the company. Under the
pressures of his obsession with the bug and his rapidly deteriorating personal life, Ethan begins to unravel.
Raberta, on the other hand, is drawn to the challenge. Forced to learn how to program, she comesto
appreciate the intense intimacy of speaking the computer's language.” (Source)

Thisisthe third book in my project to read all of Ellen Ullman's books, as part of alarger project to read
more deeply (in a more focused, thoughtful way) this year. | anticipated that Ellen Ullman's fiction would be
very different in style from her nonfiction. Actually, this novel, as directly about programming as her
nonfiction essays on the topics, had essentially the same strengths.

She captures what it's like to be a programmer, from the big picture fedl of what it's like to program to the
nitty-gritty of the programmer's daily life, in away |'ve not seen anyone else manage.

She intimately relates the experience of programming and the daily life of the programmer - whether herself
or her fictional characters. For instance, software tester Robertais telling us about aday in her life where
things went wrong and begins by explaining how she intended to try to find a problem with the software she
was testing that day: "A planned disaster was what | was looking for. A failure under my control. A perfect
test."

She writes thoughtfully about the role of computersin society.

She uses the experience of programming and the analogy of computersto illuminate what it means to be
human and uses comparisonsto daily life to show what it's like to be a programmer. | really love that she
makes me think differently about both these things by considering them together.

These strengths brought to the task of novel writing lead to great characters. The author is able to show their
innermost lives, the most private thoughts, and connect them to their daily lives and their work as
programmers. These strengths do not lend themselves to writing a particularly gripping plot. The story was
slow and predictable. | was enjoying reading enough that | didn't want to put this book down, but regardless
of what some descriptions may tell you, | didn't find thisanovel of suspense. It's thoughtful, it's beautifully
written, but the plot is not exciting. 1'd recommend this to anyone who enjoyed her essay collections; to
someone looking for a character-driven story who at least doesn't mind hearing alot about programming;
and, of course, to other programmers. | think you'll get areal kick out of it.This review was originally posted
on Doing Dewey

Stephen Gallup says

| found this quirky novel on atable in the break room where | work, and once | opened it | couldn't put it
down.

How could anybody not recognize and identify with this opening scenario/rant:

"And so we waited. Tick-tock, blink-blink, thirty seconds stretched themselves out one by one, aholein
human experience. Waiting for the system: life today is full of such pauses. The soft clacking of computer
keys, then the voice on the telephone telling you, 'Just a moment, please.’ The credit-card reader instructing
you 'Remove card quickly!" then displaying 'Processing. Please wait.' The little hourglassicon on your
computer screen reminding you how time is passing and there is nothing you can do about it. ... All the hours
the computer is supposedly saving us--I don't believeit ... It hasfilled our lives with little wait states like this
one, useless wait states, little slices of time in which you can't do anything at al but stand there, sit there,
hold the phone--the sort of unoccupied slices of time no decent computer operating system would tolerate for
itself.”

Clearly, the author is someone well-versed in the intersection between human life and the cyber world, and
what she has made of it here amounts to a very realistic horror story.

| didn't take the book back to the break room when I'd finished it. It's a keeper.

David says

I love novels that about life at an average workplace, because we spend so much of our time doing this but it
isoften ignored as atopic. Thisisagood novel but not avery cheerful one, because sometimes people and
things go spinning out of control and all we can do is watch. This book isworth going out of your way to

find and read.

